

(Ten Minutes of) Tau Tagging

April 4, 2014: BNL Energy Frontier Workshop

Sarah Demers Yale University

Taus

Lifetime: 10⁻¹³ s

Missing energy in decay

Channel	Dominant Decay Mode	BR[%]
$e^-\bar{\nu}\nu$	$e^-\bar{\nu_e}\nu_{\tau}$	$17.82 \pm .04$
$\mu^- \bar{\nu} \nu$	$\mu^- \bar{\nu_\mu} \nu_ au$	$17.39 \pm .04$
$h^-\nu$	$\pi^- u_ au$	$11.61 \pm .06$
$h^-\pi^0\nu$	$ ho^- u_ au ightarrow \pi^-\pi^0 u_ au$	$25.94 \pm .09$
$h^-\pi^0\pi^0(\pi^0)\nu$	$a_1^- u_ au o \pi^- \pi^0 \pi^0 u_ au$	$10.85 \pm .11$
$h^-h^-h^+(\pi^0)\nu$	$a_1^- \nu_\tau \to \pi^- \pi^- \pi^+ \nu_\tau$	$14.56 \pm .07$

Colliding Fundamental Particles

vs.
Colliding Hadrons

Snapshot of results from 2008 BaBar paper, just to illustrate the different world of physics in the two environments . .

Decay Mode	World Average	BABAR Measurement
$ \tau^{-} \rightarrow K^{-} \pi^{0} \nu_{\tau} $ $ \tau^{-} \rightarrow \pi^{-} \pi^{-} \pi^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow K^{-} \pi^{-} \pi^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow K^{-} \pi^{-} K^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow K^{-} K^{-} K^{+} \nu_{\tau} $ $ \tau^{-} \rightarrow \phi \pi^{-} \nu_{\tau} $ $ \tau^{-} \rightarrow \phi K^{-} \nu_{\tau} $	$(4.54 \pm 0.30) \times 10^{-3}$ (PDG Avg. [12]) $(9.02 \pm 0.08) \times 10^{-2}$ (PDG Fit. [12]) $(3.33 \pm 0.35) \times 10^{-2}$ (PDG Fit. [12]) $(1.53 \pm 0.10) \times 10^{-2}$ (PDG Fit. [12]) $< 3.7 \times 10^{-5} CL = 90\%$ [12] $< 2.0 \times 10^{-4} CL = 90\%$ [12] $(4.06 \pm 0.25 \pm 26) \times 10^{-2}$ [13]	$(4.16 \pm 0.03 \pm 0.18) \times 10^{-3}$ $(8.83 \pm 0.01 \pm 0.13) \times 10^{-2}$ $(2.73 \pm 0.02 \pm 0.09) \times 10^{-3}$ $(1.346 \pm 0.010 \pm 0.036) \times 10^{-3}$ $(1.58 \pm 0.13 \pm 0.12) \times 10^{-5}$ $(3.42 \pm 0.55 \pm 0.25) \times 10^{-5}$ $(3.39 \pm 0.20 \pm 0.28) \times 10^{-5}$

Is this likely a tau that decayed semi-hadronically?

and not an

electron

muon

or jet?

What kind of physics can I do with it?

Hey, I got a tau!

Access Polarization

Hunt for Rare Decays

April 4, 2013 4

Tau vs. Jet Discrimination

ATLAS: Mainly Boosted Decision Trees

CMS: Classifiers based on Particle Flow tau decay constituents

April 4, 2013

5

ATLAS Identification Variables

Hadronic Radius: weighted shower width
Calorimetric Radius: weighted shower width
Track Radius: weighted track width
Leading Track Momentum Fraction
Fraction of Energy in Core
Electromagnetic Fraction
Calorimeter Cluster Mass
Track System Mass
Transverse Flight Path Significance of 2nd Vertex
Isolation
Leading Track Impact Parameter Significance

ATLAS-CONF-2012-142

Stability with Pile-up (2011)

CMS classifiers

Performance Examples: $W \rightarrow \tau v$ selection

BEFORE "tight" tau Identification (tuned for 30% signal efficiency)

AFTER "tight" tau Identification (tuned for 30% signal efficiency)

April 4, 2013 7

A jet is not a jet is not a jet

leading jets, sub-leading jets, etc.

pile-up influencing jet clustering

track multiplicity

jet transverse momentum

quark-initiated jets vs. gluon-initiated jets

Tau vs. Electron Discrimination

a 1-track tau can look quite a bit like an electron

At ATLAS, a high fraction of electrons are reconstructed as tau candidates, and pass the identification stage that was designed to veto jets

Particle ID capabilities in the tracker is hugely helpful!

Electron Veto Performance: Z -> ee events

Tight requirement on one electron, require tau candidate in event, no background subtraction in plots below.

BEFORE tau ID and electron veto

AFTER tau ID and electron veto

Tau vs. Muon Discrimination

Muon vs. Tau separation is not typically a concern, assuming EM and HAD calorimeters have fine enough granularity.

Fraction of transverse energy of tau candidate deposited in electromagnetic calorimeter

On Not Underestimating the Power of Statistics

Measurements that rely on tau polarization CAN be done at hadron colliders

Process	P _τ Prediction
W [±] -> τν	-1
H±-> τν	+1
Ζ -> ττ	≈ -0.15
Η -> ττ	0

$$P_{\tau} = -1.06 \pm 0.04 \, (stat) \, ^{+0.05}_{-0.07} \, (syst)$$

And the elephant in the room

Summary: What We Want for Tau Tagging

- Good Tracking (particle ID a plus here!)
- High Granularity EM and HAD Calorimeter
- Knowing initial conditions, like energy of colliding particles/partons, facilitates measurements with taus
- Not knowing initial conditions provides complications, but doesn't take you out of the game in a world of high statistics
- Particle Discrimination (K, π , π^0) is required for precision measurements